Why choose LUCAS?

Clinical Overview

LUCAS® 2 CHEST COMPRESSION SYSTEM
LUCAS delivers effective and consistent chest compressions with a minimum of interruptions.

Better than manual CPR...
LUCAS delivers compressions according to guidelines:
- > 5cm/2” depth
- > 100 compressions per minute
- equal time for compression / decompression
- full chest recoil

LUCAS has shown to significantly improve quality and increase consistency of compressions compared to manual CPR, both at the scene, during ambulance or helicopter transportation, as well as in the cath lab setting.1,3

...with less interruptions
In prehospital use, at the scene and during transportation,4,5 LUCAS has shown to significantly increase chest compression fractions to around 90% compared to manual CPR.
LUCAS helps sustain blood circulation to the brain, the heart and vital organs.

Increased flow to the brain

LUCAS has shown to improve blood flow to the brain compared to manual CPR in prehospital patients (60% increase as measured by Doppler). These findings are consistent with results from experimental studies. In addition, brain circulation as measured by cerebral oximetry during prolonged LUCAS compressions has shown values exceeding previously published values during manual CPR.

>15mmHg threshold for ROSC

Both human and experimental studies have shown that LUCAS can produce coronary perfusion pressures of over 15mmHg during prolonged CPR, better than manual CPR.

+20% EtCO₂

LUCAS has shown to significantly increase EtCO₂ levels, compared to manual CPR in a prehospital, controlled clinical study as well as in experimental studies.
LUCAS allows for lifesaving interventions.

Treat the cause during prolonged CPR

The importance of diagnosing and treating the underlying cause (known as the H’s and the T’s) is fundamental to the management of all cardiac arrest rhythms.15

LUCAS has helped save patients whose cardiac arrest required treatment of the underlying cause, such as:

- coronary artery infarction treated with PCI during CPR16-19
- pulmonary emboli treated with prolonged CPR and thrombolysis20-22
- accidental hypothermia and/or submersion23-28
- electrolytical imbalances29, 30
- cardiac arrest due to anaphylactic shock31

Several more therapy-resistant cardiac arrests requiring long resuscitation efforts, many over an hour, have been reported with LUCAS and with good neurological outcomes.32-36

PCI during LUCAS chest compressions

Mechanical chest compressions have an AHA class IIa recommendation for use during emergency coronary intervention in the cath lab, based mainly on LUCAS references.37
LUCAS delivers safe chest compressions for patients and responders.

Safe for the patient

Autopsy studies have shown that LUCAS compressions are safe for the patient, with the same type of side-effects as for manual CPR. EMS and hospital organizations around the world have reported good, improved or neutral short term outcomes as well as improved neurological outcomes after implementing LUCAS.

Improved responder safety

Effective CPR is hard work, tiring and could cause injury to a rescuer’s back. One study showed that ~60% of rescuers always experienced back discomfort when providing manual CPR. LUCAS facilitates effective CPR and removes the issue of the “mattress effect”. CPR related back injuries can be reduced among the staff.

In the case of transporting patients during ongoing CPR, rescuers can sit safely belted in ambulances or harnessed during take-off and landing in helicopters.

In the cath lab, CPR providers can stay out of the immediate X-ray field.
Referenced publications

The references in this document are a selection from over 100 publications available on the LUCAS Chest Compression System (as of March 2013).

If you want to see the comprehensive list, please ask your LUCAS sales representative for a copy of the LUCAS Reference List or the LUCAS Summarized Bibliography.

